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a b s t r a c t

The evaluation of the exposure to risk factors in workplaces and their subsequent redesign represent one
of the practices to lessen the frequency of work-related musculoskeletal disorders. In this paper we
present K2RULA, a semi-automatic RULA evaluation software based on the Microsoft Kinect v2 depth
camera, aimed at detecting awkward postures in real time, but also in off-line analysis. We validated our
tool with two experiments. In the first one, we compared the K2RULA grand-scores with those obtained
with a reference optical motion capture system and we found a statistical perfect match according to the
Landis and Koch scale (proportion agreement index ¼ 0.97, k ¼ 0.87). In the second experiment, we
evaluated the agreement of the grand-scores returned by the proposed application with those obtained
by a RULA expert rater, finding again a statistical perfect match (proportion agreement index ¼ 0.96,
k ¼ 0.84), whereas a commercial software based on Kinect v1 sensor showed a lower agreement (pro-
portion agreement index ¼ 0.82, k ¼ 0.34).

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Despite the steady improvement in working conditions, ac-
cording to the Sixth European Working Conditions Survey
(Eurofound, 2015), exposure to repetitive arm movements and
tiring positions still remains a common issue. Taking into account
worker's health and also welfare costs, it is mandatory to apply
policies aimed at minimizing risks belonging to the work-related
musculoskeletal disorders (WMSDs). WMSDs include “all muscu-
loskeletal disorders that are induced or aggravated bywork and the
circumstances of its performance” (WHO and others, 2003). The
best applicable practice to prevent WMSDs consists in the evalua-
tion of the exposure to risk factors in theworkplace and in planning
an eventual ergonomic intervention as the workplace redesign.

Many methods have been developed with this goal. They can be
classified into three groups: i) self-report; ii) direct measurement,
and iii) observational methods (Li and Buckle, 1999). Self-reports
methods suffer from non-objective factors and are affected by
intrinsic limits of subjective evaluations (Balogh et al., 2004; David,
2005). Direct methods use data from sensors attached to the
worker's body, but they are typically more expensive, intrusive, and
time-consuming (Kowalski et al., 2012; Xu et al., 2015).
.M. Manghisi).
Observational methods, which are widely applied in industry,
consist of direct observation of the worker during his work shift. A
detailed review of the most common observational methods can be
found in (Roman-Liu, 2014) where OWAS, revised NIOSH, RULA,
OCRA, REBA, LUBA, and EAWS are compared. In industrial practice,
posture data are collected through subjective observation or esti-
mation of body-joint angles in pictures/videos.

Supplementary video related to this article can be found at
http://dx.doi.org/10.1016/j.apergo.2017.02.015.

These methods have the main disadvantage to require a field
expert who performs a time consuming analysis of the postures.
The introduction of low-cost and calibration-free depth cameras,
such as the Microsoft Kinect v1 sensor, provided easy-to-use de-
vices to collect data at high frequencies, and suggested a semi-
automatic approach to observational methods. Several authors
studied the accuracy of kinematic data provided by the Kinect v1
device in various application domains (Clark et al., 2012, 2013;
Dutta, 2012; Bonnechere et al., 2014; Xu et al., 2015). The results
showed that Kinect v1 is accurate enough to capture human skel-
etons in a workplace environment. The accuracy and robustness of
the provided joint positions (skeleton tracking) are promising for
applications that require to fill in an ergonomic assessment grid
(Diego-Mas and Alcaide-Marzal, 2014; Plantard et al., 2015). Patrizi
et al. (2015) compared a marker-based optical motion capture
system with a Kinect v1 for the assessment of the human posture
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during working tasks and the recommended weight limit in the
NIOSH lifting equation. Two other works exploited Kinect v1 to
compute an ergonomic score based on the EAWS method (Nguyen
et al., 2014; Kruger and Nguyen, 2015).

Observational methods like OWAS, NIOSH, OCRA, and EAWS,
even if supported by depth cameras user data, still require a heavy
intervention by a field expert to estimate the required parameters
(e.g. forces, loads, static/repetitive muscular activity etc.). The ISO
standard 11228-3:2007(E) (ISO, 2007) suggests the use of a
simplified method in the early stage of the analysis and, if critical
conditions are detected, provides the OCRA method to be applied
for additional investigation. Among the simplified methods for
rapid analysis of mainly static tasks, the RULA, acronym of Rapid
Upper Limb Assessment, is one of the most popular (McAtamney
and Nigel Corlett, 1993). The main weakness of RULA is related to
the inter-rater reliability. Robertson et al. (2009) found just “fair”
inter-rater reliability of the RULA grand-score (ICC<0.5) among four
trained raters. Dockrell et al. (2012) proposed an investigation of
the reliability of RULA that demonstrated higher intra-rater reli-
ability than inter-rater reliability implying that serial assessments
would be more consistent if carried out by the same person. Bao
et al. (2009) showed that, if a “fixed-width” categorization strat-
egy is used when classifying the angles between body segments,
the inter-rater reliability grows with the amplitude of the width.
Moreover, larger body parts as shoulder and elbow, allow better
estimation than smaller ones, as wrist and forearm (Lowe, 2004a,
2004b).

Therefore, RULA can be effectively aided by computer processing
and skeleton tracking systems. In (Haggag et al., 2013) the authors
describe a framework combining the Kinect v1 with the RULA
method for 3Dmotion analysis. The Kinect v1 skeleton tracking has
also been integrated in the DHM Jack tool (Siemens, 2013), and the
commercial software, Task Analysis Toolkit module (Jack-TAT), es-
timates, in real time, the ergonomic risk of the executed tasks. The
advantages of this application of depth sensors are: the real time
calculation, the portability of the device, and the reduced cost
(Horejsi et al., 2013). The Kinect v1 sensor can be useful in devel-
oping ergonomic risk assessment tools, lessening the time con-
sumption of visual-inspection assessing procedures, and removing
the problem of the bias introduced by the analyst.

However, three main technical problems arose in the works
using Kinect v1: the lack of wrist joints tracking, the influence of
the environment lighting conditions, and the self-occlusions (in
postures such as crossing arms, trunk bending, trunk lateral flexion,
and trunk rotation).

The Kinect v2, presented in 2013, uses a different technology
(time of-flight), and according to the specifications, it outperforms
the previous version. It tracks 25 body joints including wrists (see
Fig. 1); it is more robust to artificial illumination and sunlight
(Zennaro et al., 2015) and more robust and accurate in tracking of
human body (Wang et al., 2015). Conversely, a study (Xu and
McGorry, 2015) found the non-trivial result that Kinect v1 out-
performs v2 as regards average error of joint position (76 mm vs
87 mm) in seated and standing postures. Wiedemann et al. (2015)
measured the accuracy of ergonomic-relevant angles computed by
Kinect v2, using a marker based motion-capture system as refer-
ence. They measured high deviations of the neck angle
(�31.0�±9.1�) and of the upper body rotation along the longitudinal
axis (24.0�±3.5�), while the remaining upper body inclinations and
joint angles showed higher accuracies (deviation less than 7.2� in
median). Furthermore, the error in the standing postures appeared
to be lower than in the sitting ones. In a very recent paper, Plantard
et al. (2016) presented an interesting study on the validation of
RULA grand-scores obtained using Kinect v2 data, in both labora-
tory and real workplace conditions. In laboratory conditions they
measured angular errors between an average value of 7.7� for the
simplest case (no occlusions) and 9.2� for the worst case. They also
reported RULA grand-scores correctly computed for more than 70%
of the conditions.

These results feature the Kinect v2 sensor to be a promising tool
for postural analyses, especially for themetrics whose calculation is
based on angular thresholds that tend to minimize the effect of
joint angle errors, as RULA. However, some of the results reported
in literature are controversial, since they are sensitive to the specific
setup and to the postures adopted for the validation. We think that
there is still need for further tests to strengthen the knowledge.
Therefore our research questions was: is it possible to effectively
use the Kinect v2 data for an early screening of exposure toWMSDs
risk? The typical application scenario can be derived by the ISO
standard 11228-3:2007(E), e.g. the workspace is continuously
monitored by a depth camera connected to an automatic RULA
evaluation system and, if critical conditions are automatically
detected, additional investigations (e.g. OCRA) can be carried out.

In this paper, we present the implementation of a software tool
called K2RULA, a fast, semi-automatic, and low-cost tool, based on
the Kinect v2. We validated the proposed tool with two experi-
ments. In the first one, we compared the grand-scores from
K2RULA with the ones obtained with data collected by a reference
optical motion capture system. In the second experiment, we
compared the grand-scores obtained from K2RULA, Jack-TAT and a
RULA expert.

2. Method

2.1. K2RULA software

We implemented K2RULA using C#, Windows Presentation
Foundation libraries (.NET framework) and Microsoft Kinect for
Windows SDK 2.0. The GUI of the K2RULA tool allows to select the
video stream to be visualized (depth or infrared), and to activate a
secondary window for the RBG stream (Fig. 2). The button “Real
Time RULA” evaluates the RULA grand-score of the current posture.
Furthermore, playback control buttons allow the execution of an
offline analysis on a recorded file.

2.1.1. The RULA method
The RULA method consists in the fulfillment of an assessment

grid, where the human body is divided in two sections (Section A:
upper arm, lower arm, and wrist; Section B: neck, trunk, and legs).
A score is calculated using three tables. The first two tables give the
posture scores of the body segments. Each one of these scores is
then corrected according to the frequency of the operations and the
force load on the limbs. The third table takes as input the previous
scores and returns a grand-score. An action level list indicates the
intervention required to reduce the risks of injury of the operator:

� 1e2 grand-score: the posture is acceptable if it is notmaintained
or repeated for long periods,

� 3e4 grand-score: further investigation is needed and changes
may be required,

� 5e6 grand-score: investigation and changes are required soon,
� 7 grand-score: investigation and changes are required
immediately.
2.1.2. Data retrieval
The Kinect tracking algorithm returns a hierarchical skeleton

composed by joint objects (Fig. 1). Each joint position is calculated
in real time as the average of the positions stored in a 300 ms
memory buffer (about 10 valid frames at 30 Hz) to minimize



Fig. 1. The skeleton returned by Kinect for Windows SDK 2.0. a) Depth map and skeleton visualized by the Microsoft Kinect Studio v2.0; b) Joints position with respect to the body as
reported by Microsoft HIG (Microsoft, 2014).

Fig. 2. GUI of the K2RULA application.

V.M. Manghisi et al. / Applied Ergonomics 65 (2017) 481e491 483



V.M. Manghisi et al. / Applied Ergonomics 65 (2017) 481e491484
jittering. If the sensor is not able to track a joint (e.g. occlusion), its
position is inferred (inferred joints) from the surrounding joints by
the Microsoft SDK.

The K2RULA algorithm requires only 19 of the 25 tracked joints.
RULA parameters are trivially evaluated from geometrical angles
between the joints. However, for some angles, we need additional
processing.

We defined the trunk vector as the vector connecting the
spinebase (from Windows SDK nomenclature) to the spine-
shoulder, respectively approximately corresponding to the mid
posterior superior iliac spine (Wu et al., 2002) and the incisura
jugularis (Wu et al., 2005).

For the upper arms flextion/extension we computed the angle
between the trunk vector and the vector corresponding to the
projection of the upper arms on the sagittal plane. The latter is
evaluated as the one passing through the trunk vector and
perpendicular to the straight line connecting the shoulders.

The upper arms abduction is evaluated with the angle between
the trunk vector and the vector corresponding to the projection of
the upper arms on the plane passing through the trunk and parallel
to the straight line connecting the shoulders.

For the shoulder abductionwe computed the angle between the
vector connecting the spineshoulder to the neck and the vector
connecting the spineshoulder to the shoulder under analysis.

To evaluate the working position of the lower armwith respect to
the midline of the body and the side of the body, we analyzed the
relative positions of the projections of the wrist, spineshoulder and
shoulder on the straight line connecting the shoulders (Fig. 3).

As regards the wrist location, we could only approximatively
assess the adduction/abduction angle. We computed the angle
between the vector connecting the elbow to the wrist and the
vector connecting the wrist to the handtip.

The grid assessment requires taking into account the trunk
twisting and bending state. We verified that the sensor always
returns a skeleton object with the same directions for the normal to
the three joints in the trunk, regardless of the twisting state of the
body (Fig. 1). Hence, we calculated the angles between the normal
to the ankles (directed towards the outside of the body) and the
normal to the trunk, directed towards the sensor (Fig. 4). To detect
the trunk bending state we computed the angle between the
straight line passing through the hip joints and the direction
normal to the horizontal plane. The trunk flexion degree is trivially
assessed by the angle between the direction perpendicular to the
horizontal plane and the trunk vector.

We assessed the neck flexion/extension computing the angle
between the normal to the trunk vector in the sagittal plane and the
projection in this plane of the vector connecting the spineshoulder
to the head. This solution leads to an overestimation of the neck
back flexion with respect visual inspection. Therefore we added a
positive bias of five degree in the computation of the angle on a
heuristic base. We detected the neck bending computing the angles
between the vector connecting the spineshoulder to the head and
Fig. 3. Lower arms working position assessment geometrical construction.
each one of the vectors connecting the spineshoulder to the
shoulders.

Despite the improvements in joint detection provided by Kinect
v2, the accuracy is not sufficient to detect some important pa-
rameters for some joints, such as wrist and neck twist. In addition,
K2RULA is not able to evaluate other factors, such as the load on
arms and the kind of muscle use, that affect the RULA grand-score.
As solution, we implemented default settings, and provided a
simple GUI for the operator to set them (Fig. 5).

2.1.3. Functionalities
The “Real Time RULA” button activates the display of the RULA

scores panel (Fig. 6).
This window provides the scores of each body section for both

sides, the computed angles, and the grand-score, and saves the
report on a text file. The action level is visualizedwith a color-coded
background varying from green (grand score 1e2) to red (grand-
score 7). Furthermore, the inferred joints are evidenced with red
circles on the skeleton to highlight the reliability of the assessed
scores.

Another functionality of K2RULA is to process continuously a
recorded file in the standard Microsoft format (.xef). The software
calculates the grand-score for each of the frames and generates a
report, exportable in a comma separated values file, while visual-
izing an interactive timeline plot. By clicking on one point of the
graph, a pop-up label displays the RULA grand-score for that instant
(Fig. 7).

This functionality allows to continuously evaluate the working
activities and to spot for critical conditions.

2.2. Experiment 1: validation with an optical motion capture
system

In this experiment we studied the agreement between the
K2RULA tool and a reference tracking system. We define our hy-
pothesis 1: K2RULA RULA grand-scores are in accordance with an
optical motion capture system.

2.2.1. Equipment
To run K2RULA, we used a Kinect v2 connected to a PC with a

CPU Intel® Core™ i5-4200 2.50 GHz, 4 GB RAM, GPU NVIDIA
GeForce GT 740 M, OS Windows 8. The reference tracking system
was a BTS SMART-DX 5000 optical motion capture systems (BTS-
Bioengineering, 2016) composed by 8 infrared digital cameras,
with acquisition frequency of 100 Hz, and one PC with a CPU Intel®

XEON E5640 2.67 GHz, e 3 GB RAM, OS Windows XP. We used the
SMART Suite software for raw data acquisition and processing (BTS-
Bioengineering, 2016).

2.2.2. Procedure
We selected 15 static postures: nine of them (Fig. 8) from the

EAWS form (IAD, 2012), and six (Fig. 9) extracted from a booklet of
the European campaign against musculoskeletal disorders
(Colombini et al., 2012).

We recruited a volunteer (male, age 26, height 180 cm, and
weight 80 kg) as an actor to simulate the aforementioned postures.

We positioned eighteen markers (1.0 cm diameter reflective
spheres) on anatomical landmarks, as suggested in (Wu et al., 2005)
(see Table 1 and Fig. 10). For specific landmark choices we referred
to the literature: head (Xu and McGorry, 2015), shoulders and neck
(Wiedemann et al., 2015), elbows (Mackey et al., 2004; Cutti et al.,
2005), wrist centers (Cutti et al., 2005; Aguinaldo et al., 2007), and
the pelvis girdle (Ferrari et al., 2008).

We positioned the Kinect in front of the actor at a distance of
about 240 cm and at a height of 180 cm from the ground. The actor



Fig. 4. Trunk twisted detection scheme.

Fig. 5. Window interface for manual settings and default values.
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was in the center of the area framed by the optical motion capture
system in a laboratory with controlled lighting conditions (400lx).
We recorded simultaneously the static postures with both the
tracking systems and synchronized them according to the same
event-based procedure as in (Xu et al., 2015).
1 The INAIL, the National Institute for Insurance against Accidents at Work, in
Italy is the public authority that manages the mandatory insurance against occu-
pational accidents and diseases.
2.2.3. Data analysis
We imported the coordinates from the optical motion capture

system in a 3D CAD parametric model (Autodesk Inventor profes-
sional 2017), and we measured the required angles. We then
computed the RULA grand-scores using the RULA Employee
Assessment Worksheet (Hedge, 2000).

We assessed the agreement between the two systems by using
two-dimensional contingency tables (Fleiss et al., 2004). We
computed the proportion agreement index (p0), and the strength of
agreement on a sample-to-sample basis as expressed by linear
weighted Cohen's kappa.
2.3. Experiment 2: validation with RULA expert and comparison
with the Jack TAT

In the second experiment, we compared the K2RULA tool with a
human RULA expert and with the Jack TAT. We defined our:

� hypothesis 2: K2RULA grand-scores are in agreement with the
ones obtained by the RULA expert;

� hypothesis 3: the K2RULA provides better results than the Jack
Task Analysis Toolkit
2.3.1. Equipment
We collected simultaneously data with a Kinect v2, a Kinect v1,

and videowith aWebcam Logitech®Hd Pro C920. Two identical PCs
(CPU Intel® Core™ i5-4200 2.50 GHz, 4 GB RAM, GPU NVIDIA
GeForce GT 740 M, OS Windows 8) ran our K2RULA and the TAT
software tool version 8.0.1 (based on Kinect v1).

2.3.2. Procedure
We used the same 15 static postures of experiment 1. We

recruited a RULA expert (an occupational doctor working for INAIL,1

with more than 10 years of practice) and one volunteer (male, age
28, height 170 cm, weight 72 kg) as actor. During the experiment,
we positioned the two Kinect sensors and the video camera (one
above the other) in front of the “actor” as in the previous experi-
ment in a laboratory with controlled lighting conditions (400lx).
While the actor was keeping each static pose for a few seconds, we
recorded each posture. We assessed the RULA grand-scores using
both the K2RULA and the Jack-TAT. The RULA expert analyzed off-
line the recorded video of each posture and assessed the RULA
grand-scores.

2.3.3. Data analysis
We carried out the comparison between the two Kinect based

(KB) methods using as baseline the expert evaluation, as in (Diego-
Mas and Alcaide-Marzal, 2014). We assessed the agreement be-
tween results as done in experiment 1.

3. Results

3.1. Experiment 1

Fig. 11 shows the RULA grand-scores for the body left and right
side obtained with the K2RULA and the optical motion capture
system.

These results indicate “perfect” agreement between the two
systems (see Table 2) in the Landis and Koch scale (Landis and Koch,
1977).



Fig. 6. The RULA scores panel.

Fig. 7. Grand-scores plot for an offline analysis on a recorded file: postures at seconds 6e7 and 9e11 are critical and require further analysis.
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Fig. 8. Postures belonging to the EAWS form v1.3.4.
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To validate the statistical significance of this result, we also
tested the null hypothesis that the observed agreement is accidental,
by referring the value of the critical ratio z to tables of the standard
normal distribution. Rejecting the null hypothesis (p < 0.001) for
both the body left and right side, allowed us to confirm the hy-
pothesis 1: K2RULA grand-scores are in accordance to the RULA
assessments obtained with an optical motion capture system.
3.2. Experiment 2

Fig. 12 shows the RULA grand-scores for the K2RULA and the
Jack-TAT compared with the expert evaluation as baseline.

These results indicate “perfect” agreement between the expert
and the K2RULA and just “fair” agreement between the expert and
the Jack-TAT (see Table 3).



Fig. 9. From image a) to e) the five most common awkward postures, in image f) the posture used as basis for comparison. (Source: http://www.inail.it/internet_web/wcm/idc/
groups/internet/documents/document/ucm_portstg_093067.pdf).

Table 1
The anatomical landmarks for reflective markers positioning, the Kinect-identified joint names and their motion tracking system-based counterparts.

Body part Anatomical landmarks Kinect-identified joint
names

Motion tracking system-based
counterparts

Head Left/Right Temporal Regions (LTR/RTR) Head (LTR þ RTR)/2
Torso Left/Right Medial end of the Clavicle (LMC/RMC) (Not present) (LMC þ RMC)/2
Neck C7 Neck (C7 þ (LMC þ RMC)/2)/2
Left shoulder Left Acromion (LA) Left Shoulder LA
Right

shoulder
Right Acromion (RA) Right Shoulder RA

Left elbow Left Lateral Humeral Epicondyle (LLHE), Left Medial Humeral Epicondyle (LMHE) Left Elbow (LLHE þ LMHE)/2
Right elbow Right Lateral Humeral Epicondyle (RLHE), Right Medial Humeral Epicondyle

(RMHE)
Right Elbow (RLHE þ RMHE)/2

Left wrist Left Radial Styloid (LRS), Left Ulnar Styloid (LUS) Left Wrist (LRS þ LUS)/2
Right wrist Right Radial Styloid (RRS), Right Ulnar Styloid (RUS) Right Wrist (RRS þ RUS)/2
Left hip Left Anterior Superior Iliac Spine (LASIS) Left Hip LASIS
Right hip Right Anterior Superior Iliac Spine (RASIS) Right Hip RASIS
Sacrum Sacrum (S) Spine Base S

Table 2
Observed agreements between the K2RULA and the optical motion capture system, linear weighted Cohen's kappa and Z-test results.

Body side Po Cohen's kappa Agreement (Landis and Koch scale) z (k/sqrt (var)) p value Null hypothesis

Left 0.97 0.87 Perfect 4.38 <0.001 Reject
Right 0.97 0.87 Perfect 4.78 <0.001 Reject
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To validate the statistical significance of these results, we also
tested the null hypothesis that the observed agreement is accidental.

Rejecting the null hypothesis (p < 0.001) for the agreement
between the expert and the K2RULA allowed us to confirm the
hypothesis 2: K2RULA grand-scores are in agreement with the ones
obtained manually by the RULA expert. On the contrary, accepting
the null hypothesis (p ¼ 0.412) for the agreement between the
expert and the Jack-TAT allowed us to confirm the hypothesis 3:
K2RULA provides better results than the Jack Task Analysis Toolkit.
4. Discussion

4.1. Main contributions

In the first experiment, the RULA grand-scores, returned by the
two methods, were identical in 24 postures of the 30 considered.
This result is in accordance with the outcomes presented by
Plantard et al. (2016). The only six differences were due to detection
of the arm abduction and the trunk flexion where K2RULA

http://www.inail.it/internet_web/wcm/idc/groups/internet/documents/document/ucm_portstg_093067.pdf
http://www.inail.it/internet_web/wcm/idc/groups/internet/documents/document/ucm_portstg_093067.pdf


Fig. 10. The anatomical landmarks for reflective markers positioning, on the right the skeleton body model generated with the 3D CAD tool is overlaid in green.

Fig. 11. RULA grand-scores for the body left and right side.
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overestimated the grand-score (þ1). The RULA assessment method,
based on wide angle ranges, effectively compensates the joint po-
sition differences between the two tracking systems, indeed pre-
sent as reported in the literature.
In the second experiment, the KB methods reported exactly the
expert grand-scores for postures one, four, seven, eight, ten, and
fourteen (Fig. 12). In posture two, Jack-TAT underestimated the er-
gonomic risk, returning a low score for the neck. Analyzing the



Fig. 12. KB methods vs Expert evaluation.

Table 3
Observed agreements, linear weighted Cohen's kappa and Z-test results.

Methods Po Cohen's kappa Agreement (Landis and Koch scale) z (k/sqrt (var)) p value Null hypothesis

Expert- K2RULA 0.96 0.84 Perfect 3.87 <0.001 Reject
Expert- Jack 0.82 0.34 Fair 0.82 0.412 Accept
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video frame, the neck appears back flexed. Jack-TAT was not able to
detect this situation. In posture six, the operator is kneeling with
outstretched hands high above the level of the shoulders. The neck
and forearm have high scores, involving a high ergonomic risk. The
expert and K2RULA returned the same severe grand-score. Jack-TAT
gave a lower grand-score. Jack-TAT showed some problems with
kneeling postures and sometimes it was not able to track the
skeleton. In posture nine, the operator sits with both arms raised
over shoulder height. The expert and K2RULA returned the same
grand-score whereas Jack-TAT gave a lower one. Posture ten is
characterized by the trunk rotation and by the left arm crossing the
sagittal plane. K2RULA and the expert gave the same score for each
body section. Jack-TAT in this case returned the same grand-score,
but this correspondence is just accidental as Jack-TAT un-
derestimates the arm section and overestimates the neck section. In
posture eleven, the trunk is highly flexed forward. Our tool
returned the highest grand-score since it detected even a small
twisting and a bending of the trunk. In posture twelve, Jack-TAT did
not detect the neck back flexion and underestimated the arm
section.

Jack-TAT seems to underestimate the ergonomic risk returning
frequently a grand-score lower than the one estimated by the
expert (mean error ε ¼ �0.933, error std. dev. s ¼ 1.34). K2RULA
slightly overestimates the risk (mean error ε ¼ 0.267, error std. dev.
s ¼ 0.44). However, this overestimation is conservative and hence
consistent with the goal of this tool. K2RULA showed a “perfect”
agreement with respect to the expert (P0 ¼ 0.96, k ¼ 0.84). Our
results showed a slightly better agreement than that obtained by
Plantard et al. (2016), although their data were acquired in real
work conditions.

4.2. Limitations of the study and possible research developments

We tested our tool in a laboratory set-up with controlled
lighting conditions and without occluding objects. This is the best
working condition for the Skeleton Tracking algorithm for Kinect v2
(Wang et al., 2015) and Kinect v1 (Microsoft, 2013), and our results
suffer only from the actor's body self-occlusions.We need to further
investigate the behavior of our tool in a real working environment.
Moreover the hands configuration plays a key role, thus our future
research will address the hand tracking limits of the Kinect v2. We
are planning to apply data fusion techniques to data gathered from
the depth sensor and from lowcost non-intrusivewearable devices.
The availability of such data would probably allow the imple-
mentation of methods and tools able to assess fatigue indexes more
detailed than the RULA score, such as OCRA index, moving from
static postures analysis to continuous measurement.

5. Conclusions

In this paper, we presented K2RULA, a real time semi-automatic
RULA evaluation system based on Kinect v2. It allows to speed-up
the detection of critical conditions and to reduce the subjective
bias. K2RULA is able to analyze off-line data and to save the results
for deeper ergonomic studies. We validated the proposed tool with
two experiments, using as baseline an optical motion capture sys-
tem and a RULA expert, proving the reliability of K2RULA as a faster
alternative to classical visual inspection evaluation. We also
compared it with a commercial software, the Jack-TAT, based on the
Kinect v1 sensor. In summary, we demonstrated in laboratory
condition that:

1. K2RULA grand-scores are equivalent to the assessments ob-
tained with an optical motion capture system;

2. K2RULA grand-scores are in perfect agreement with a RULA
expert evaluation;

3. K2RULA outperforms the Jack-TAT tool, based on Kinect v1.

We can conclude that the proposed system can be effectively
used as a fast, semi-automatic and low-cost tool for RULA analysis.
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